Master of Science (Physics) Third Semester Main Examination, Dec-2020 Atomic and Molecular Physics-II (MSP303T)

Time:	3:00 Hrs Max Marks (MISP3031)	85
	Attempt all questions. Question no 1 to Question no. 5 has 2 marks and part B is 7 marks.	
Q.1	 (a) Explain the application of NMR techniques. (b) Write the interaction between nuclear spin and magnetic field. OR (a) Explain the relaxation process spin-spin interaction. 	
	(b) Explain the brief spin-spin coupling between two and more nuclei.	
Q.2	(a) Explain frank condom principles.(b) What do you mean by dissociation and pre-dissociation? OR	
	(a) Explain Vibrational course structure of electronic spectra.(b) Write short note on frank condom factor.	
Q.3	(a) Explain molecular polarisibility in Raman effect.(b) What is difference between Raman and infrared spectroscopy. OR	
	(a) Explain Raman spectra of diatomic molecules.(b) Write the application of Raman effect.	
Q.4	(a) What are the principle of Massbauser Spectroscopy?(b) What do you mean by gamma emission.OR	
	(a) Explain Linc width.(b) Write the application of Massbauser Spectroscopy.	
Q.5	(a) Explain hyper fine coupling.(b) What do you mean by ESR.	
	OR (a) Explain:- (i) G- Values (ii) An Isotropic system	
	(ii) An Isotropic system(b) What are the principle of ESR spectrometer.	Enrollment No
	Master of Science (Physics) Third Semester Main Examination, Dec-2020 Condensed Matter Physics (MSP301T)	

Time: 3:00 Hrs

Max Marks 85

Note: Attempt all questions. Question no 1 to Question no. 4 has 2 parts. Part A is 10 marks and part B is 7 marks.

Q.1 (a) Explain Bravis Lattice in two and three dimension.(b) Explain sodium chloride crystal structure.

	OR		
	(a) Explain crystal diffraction by XRay.(b) Explain zinc bleede structure		
0.2	(a) Evalain Deillessin Zanas in dataila		
Q.2	(a) Explain Brillowin Zones in details(b) Explain Bragy diffraction condition in terms of reciproca OR	l lattice vector.	
	(a) Show relation between crystal lattice axes and crystal rec(b) Explain diamond structure in details.	iprocal lattice axes	
Q.3	(a) Explain different types of stress and strain components.(b) Explain elastic compliance and stiftness constants.OR		
	(a) Describe experimental determination of elastic constants(b) Explain elastic constant for cubic isotropic.		
Q.4	(a) Explain lattice dynamic of a diatomic linear lattice.(b) Explain lattice vibrational spectrum.		
	OR (a) Describe the concept of phonos and its momentrum. (b) Describe inelastic scattering of photons by phonons.		
Q.5 of soli	Write a short notes on (Any four)- ids.	(3.5×4)=17	(a) Band theory
	(b) De Hass Van Alphen effect		
	(c) Magneto resistance(d) Anomalous skin effect		
	(e) Fermi surfaces		
	(f) Thermal conductivity	Enro	ollment No
	Master of Science (Physics)		
	Third Semester Main Examination,	Dec-2020	
— •	Digital Electronics (MSP304		
		<u>Max Marks 85</u>	ta Davit A ia 10
	Attempt all questions. Question no 1 to Question as and part B is 7 marks.	no. 4 nas 2 par	ts. Part A is 10
	•		
Q.1	(a) Solve using 2's complement.		
	(i) 101101 – 011100 (ii) 11001 – 010		
	(iii) ECB110		
	(b) Do as directed.		
	(i) $(279)_{10}$ to binary and octal no. system.		
	(ii) $(01101)_2$ to decimal and hexadecimal no. OR		
	(a) Explain Signed and unsigned binary number with examp	le.	
	(b) Convert as directed.		
	(i) Add $(A3E)_{16}$ to $(12B)_{16}$		
	(ii) $(10101011)_{2}$ binary to $(2)_{2}$ octal		

(i) $(10101011)_2$ binary to (?)₈ octal (ii) $(39)_{10}$ decimal to (?) binary

Q.2	 (a) State and explain De-Morgan's theorem with example. (b) Explain gray code. Outline the procedure for converting the binary number (11011011)₂ to its equivalent gray code ? 			
	OR			
	(a) Minimize the following logic function using K-map.			
	(a) Minimize the following logic function using K-map: $\sum m(1, 3, 5, 8, 11, 15) + d(2, 7)$			
	(b) Draw the symbols and truth table for following gates.			
	(i) AND (ii) OR (iii) NOR (iv) NAND			
Q.3	(a) What do you mean by shift register ? Draw and explain 4 bit shift register.(b) Explain multiplexer in detail.			
	OR			
	(a) What is race around condition and how it is eliminated ?			
	(b) Explain master – slave flip-flop in detail.			
Q.4	(a) Explain ripple counter with suitable diagram. Give the truth table and timing diagram also.			
	(b) Explain ring counter in detail.			
	OR			
	(a) Design a synchronous 4-6it up-down counter.			
	(b) Explain BCD counter in detail.			
0.5	Write a short notes on: (any 4) (Marks 17)			
Q.5	(a) R-2R ladder network			
	(b) Binary weighted register			
	(c) Successive approximation ADC			
	(d) De multiplexer			
	(e) D flip-flop			
	(e) D IIIp-IIop			
	Enrollment No			
Master of Science (Physics)				
Third Semester Main Examination, Dec-2020				
Nuclear and Practice (MSP302T)				

Max Marks 85

Note: Attempt all questions. Question no 1 to Question no. 5 has 2 parts. Part A is 10 marks and part B is 7 marks.

Q.1 (a) Explain low-energy n-p scattering.(b) What do you mean by exchange & Tensor forces?

OR

OR

- (a) Explain Spin dependence of n-p forces.
- (b) What are compound nuclear reaction?
- Q.2 (a) Describe the construction and working of a cyclotron. Discuss its limitations.(b) What do you mean by LINAC?
 - (b) What do you moun by En
 - (a) Explain Betatron?

Time: 3:00 Hrs

(b) Define phase stability.

- Q.3 (a) Explain the postulates of the liquid drop model. Give a simple derivation of semi-empirical mass formula.
 - (b) Define nuclear quadrapole moment.

OR

- (a) What is magic number? Explain shell model of the nucleus.
- (b) What do you mean by spin orbit interaction?
- Q.4 (a) What are the general features of B-ray spectrum?(b) Explain multipole radiation.

OR

- (a) Explain fermi theory of B-decay.
- (b) What do you mean by nuclear isomerism?
- Q.5 (a) Explain symmetry and conservation laws.
 - (b) Write brief classification of elementary particles.
 - (a) What do you mean by fundamental interaction?
 - (b) Define symmetry schemes of elementary particles.